
CSE 451: Operating Systems

Hard Lessons Learned

Windows

Reader/Writer Locks

Gary Kimura

2

A very simple model of
Readers/Writers using semaphores

var mutex: semaphore = 1 ; controls access to readcount
wrt: semaphore = 1 ; control entry for a writer or first reader
readcount: integer = 0 ; number of active readers

writer:
P(wrt) ; any writers or readers?

<perform write operation>
V(wrt) ; allow others

reader:
P(mutex) ; ensure exclusion

readcount++ ; one more reader
if readcount == 1 then P(wrt) ; if we’re the first, synch with writers

V(mutex)
<perform read operation>

P(mutex) ; ensure exclusion
readcount-- ; one fewer reader
if readcount == 0 then V(wrt) ; no more readers, allow a writer

V(mutex)

3

Windows Readers/Writers nuances

• Call EResource in Windows.

• Used the terms exclusive and shared access.

• Avoided starving exclusive by making shared
requests wait

• Allowed recursive acquisition of a lock. Meant
keeping ownership information

• Addressed an issue called priority inversion

• Then one hack added after another.
– Added call to “Try” to acquire access without blocking

– Added call to starve an exclusive waiter

– Added call to release lock for a different thread

– Augh…

Picture of the resource

1/28/2023 4

Where we started

• ExInitializeResource

• ExAcquireResourceShared

• ExAcquireResourceExclusive

• ExReleaseResource

1/28/2023 5

Added “features?”
• ExAcquireResourceShared(Wait);

• ExAcquireResourceExclusive(Wait);

• ExAcquireSharedStarveExclusive

• ExReleaseResourceForThread

• ExConvertExclusiveToShared

• ExDisableResourceBoost

• ExReinitializeResource

• ExSetResourceOwnerPointer

• ExDeleteResource

1/28/2023 6

More added “features?”

• ExGetExclusiveWaiterCount

• ExGetSharedWaiterCount

• ExIsResourceAcquiredExclusive

• ExIsResourceAcquiredShared

• Bottom line: Learning to say “NO” to requests for
adding new features.

1/28/2023 7

